Name and Surname	:	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
G 1 (G)		11/	7 (T) (T) (T)	
Crada/Class		117	Mathematics Teacher :	

Hudson Park High School

GRADE 11 MATHEMATICS June Paper 2

Time : 2 hours

Date

: June 2015

Marks :

: 100

Examiner

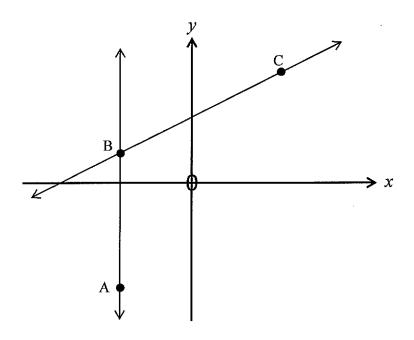
: SLT

Moderator(s)

: SLK and CLM

QUESTION PAPER

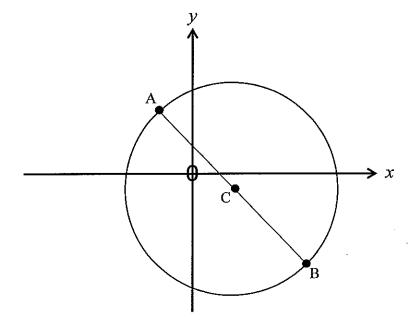
INSTRUCTIONS


- 1. Illegible work, in the opinion of the marker, will earn zero marks.
- 2. Number your answers clearly and accurately, exactly as they appear on the question paper.
- 3. **NB** Start each question at the top of a new page and leave 2 lines open between each answer.
- 4. Employ relevant formulae and show all working out. Answers alone may not be awarded full marks.
- 5. (Non programmable and non graphical) Calculators may be used, unless their usage is specifically prohibited.
- 6. Round off answers to 2 decimal places, where necessary, unless instructed otherwise.

7. ORGANISATION

- 7.1. Fill in the expected details on the front of the
 - Question Paper, AND
 - · Answer Booklet.
- 7.2. All questions are to be answered in the Answer Book provided. No foolscap paper is required.
- 7.3. Hand in your Question Paper and Answer Booklet separately.

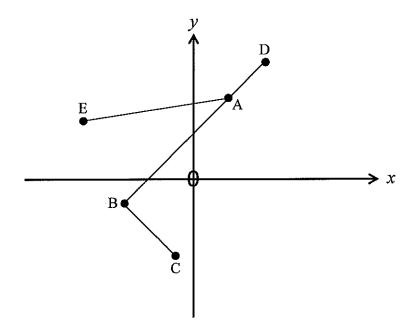
QUESTION 1 [5 marks]


1. In the diagram below, A(-3; -2), B(-3; 1) and C(3; 4):

- 1.1. Determine the equations of:
- 1.1.1. \overrightarrow{BC}
- 1.1.2. \overrightarrow{AB} $\underline{1}$ (4)
- 1.2. Write down the coordinates of D, if ABCD is a parallelogram. (1)

QUESTION 2 [2 marks]

2. C is the centre of the circle. A(-2; 5), C(p; -1) and B(7; q):

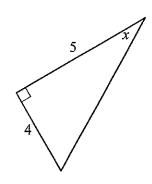


Determine the values of p and q.

(2)

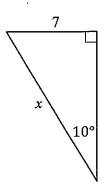
QUESTION 3 [14 marks]

3. In the diagram below, A(2; 9), B(-6; -1), C(c; -2), D(12; d) and E(e; 7):



Calculate the value(s) of:

- 3.1. d, if B, A and D are collinear (4)
- 3.2. c, if AB \perp BC (3)
- 3.3. e, if A is equidistant from B and E. (7)


QUESTION 4 [10 marks]

- 4.1. If $\theta = 108^{\circ}$, calculate the value of:
- 4.1.1. $\tan \theta + 40$
- 4.1.2. $\cos^2\theta$ <u>1</u> (2)
- 4.2. Solve for θ :
- 4.2.1. $\frac{\sin \theta}{3} = \frac{\sin 50^{\circ}}{4}$ $(0^{\circ} < \theta < 90^{\circ})$
- 4.2.2. $\cos 5\theta = 0.5$ $(0^{\circ} < 5\theta < 90^{\circ})$ $\underline{2}$ (4)
- 4.3. Calculate x in each of the following diagrams:
- 4.3.1.

<u>2</u>

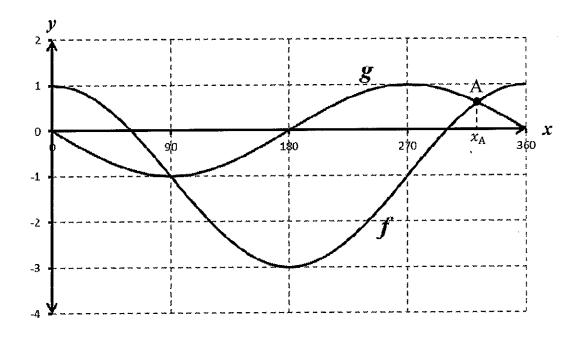
4.3.2.

2 (4)

QUESTION 5 [13 marks]

CALCULATORS MAY NOT BE USED IN THIS QUESTION

5.1.1.	Draw the special diagrams associated with the angles of 30°, 60°, 45°, 0° and 90°.		<u>3</u>	
5.1.2.	Now,			
	 using the appropriate diagram, and 			
	• SHOWING ALL STEPS AND WORKING OUT,			
	determine the values of:			
5.1.2.1.	tan 45°	<u>1</u>		
5.1.2.2.	sin 30°	1.		
5.1.2.3.	cos 0°	<u>1</u>	<u>3</u>	(6)
5.2.	Given: $3 \tan \theta - 4 = 0$ and $\theta \in (90^\circ; 360^\circ)$			
5.2.1.	Draw a diagram, in the correct quadrant, to represent the given information.		<u>2</u>	
5.2.2.	Now, use your diagram to determine the value of			
	$1-\sin\theta$		<u>2</u>	(4)
5.3.	Given: $\sin 15^\circ = k$ where $0 < k < 1$			
5.3.1.	Draw a diagram to represent the given information.		<u>2</u>	
5.3.2.	Now, use your diagram to determine			
	tan 75°			
	in terms of k .		<u>1</u>	(3)


QUESTION 6 [11 marks]

6.1. For
$$x \in [0^\circ; 270^\circ]$$
, sketch the graph of $y = -1 + \tan x$. (4)

6.2. Sketched below are the graphs of

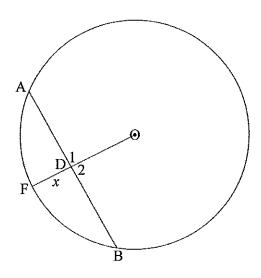
$$f(x) = p \cos x + q$$
 and $g(x) = k \sin x$

The x-coordinate of point A is x_A .

Use the graphs to:

6.2.1. Write down the values of

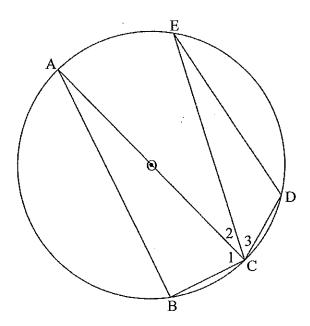
6.2.1.2.
$$q$$
 \pm


6.2.2. Solve for x, referring to x_A if necessary, where $x \in [0^\circ; 360^\circ]$:

6.2.2.1.
$$f(x) = g(x)$$

6.2.2.2.
$$g(x) \le 0$$
 $\underline{2}$ 4 (7)

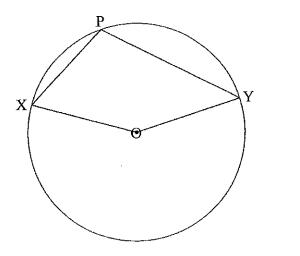
QUESTION 7 [9 marks]


7.1. O is the centre of the circle. AD = DB, DF = x, DO = 2.DF and AB = 16.

Calculate the value of x.

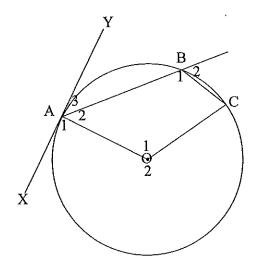
(4)

7.2. O is the centre of the circle. $\hat{C}_1 = x$ and BC = CD.



Determine \widehat{E} in terms of x.

(5)

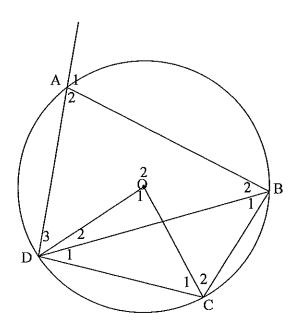

QUESTION 8 [18 marks]

8.1. Use the following diagram, where O is the centre of the circle, and prove the theorem which states that \widehat{XOY} (reflex) = $2.\widehat{XPY}$:

(5)

8.2. O is the centre of the circle. XAY is a tangent to the circle at A. $\widehat{B}_2 = 44^{\circ}$ and $\widehat{C} = 68^{\circ}$:

Calculate:


8.2.1. \widehat{O}_1

<u>4</u>

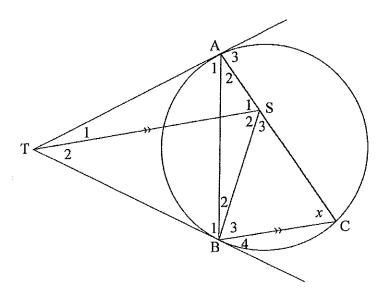
8.2.2. \widehat{A}_3

<u>3</u> (7)

8.3. O is the centre of the circle. BC = CD and $\widehat{D}_1 = 20^{\circ}$:

Determine:

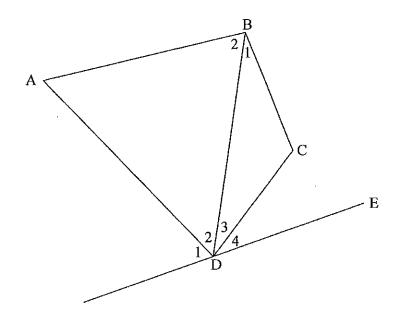
8.3.1. \widehat{O}_1


<u>3</u>

8.3.2. \widehat{A}_1

<u>3</u> (6)

QUESTION 9 [18 marks]


9.1. TA and TB are tangent to the circle at A and B respectively. TS // BC and $B\widehat{C}S = x$:

Prove that:

9.1.1. ASBT is a cyclic quadrilateral $\underline{5}$ 9.1.2. TS bisects \widehat{ASB} $\underline{5}$ (10)

9.2. $\widehat{A} = 50^{\circ}$, $\widehat{B}_1 = 2x$, $\widehat{C} = 8x + 10^{\circ}$, $\widehat{D}_3 = x + 5^{\circ}$ and $\widehat{D}_4 = 30^{\circ}$:

9.2.1. Calculate the value of x. $\frac{2}{3}$ 9.2.2. Hence, prove that:
9.2.2.1. ABCD is a cyclic quadrilateral $\frac{3}{2}$ 9.2.2.2. DE is a tangent to the circle passing through B, C and D. $\frac{3}{2}$ $\frac{6}{2}$ (8)